The Measurement Problem is a Feature, Not a Bug - Quantum Mechanics on an Informational, or (Neo-)Bohrian, Approach

Michael E. Cuffaro ${ }^{1}$
${ }^{1}$ Munich Center for Mathematical Philosophy, LMU Munich

Wednesday, August 2, 2023

The Quantum Reconstruction Program and Beyond, University of Graz, Austria

Which informational interpretation?

On Theories

Logical Empiricism and the Methodology of Modern Physics

William Demopoulos

Michael Janas Michael E. Cuffaro Michel Janssen

Understanding

 Quantum RafflesQuantum Mechanics on an Informational Approach: Structure and Interpretation

With a Foreword by Jeffrey Bub

Springer

The "Three Mikes"
(at Al's Breakfast in Dinkytown)

Other (we think) similar views:
_ Časlav Brukner, Anton Zeilinger

Other more distantly related views:

- Pragmatist interpretation (Richard Healey), QBism (Chris Fuchs, Rüdiger Schack, and others)

Other even more distantly related views:

- Relational interpretation (Carlo Rovelli; Emily Adlam and Rovelli)

What does "(neo-)" in "(neo-)Bohrian" mean?

What does "(neo-)" in "(neo-)Bohrian" mean?

- Our view is a (neo-)Bohrian position in the sense of amounting to a defense of Bohr-or at least what we take to be essential about Bohr's view-and an elaboration of how to make sense of what we have learned about the world since Bell in (neo-)Bohrian terms.

What does "(neo-)" in "(neo-)Bohrian" mean?

- Our view is a (neo-)Bohrian position in the sense of amounting to a defense of Bohr-or at least what we take to be essential about Bohr's view-and an elaboration of how to make sense of what we have learned about the world since Bell in (neo-)Bohrian terms.
- That said, the intention isn't to make a contribution to the historical scholarship on Bohr. So if you agree that the view captures what is essential to Bohr's view, you may call it Bohrian, otherwise you may feel free to call it neo-Bohrian. (Ultimately, as a group, such labels not really our concern.)

Niels Bohr to Paul Dirac, March 24, 1928:

"I quite appreciate your remarks that in dealing with observations we always witness through some permanent effects a choice of nature between the different possibilities. However, it appears to me that the permanency of results of measurements is inherent in the very idea of observation; whether we have to do with marks on a photographic plate or with direct sensations the possibility of some kind of remembrance is of course the necessary condition for making any use of observational results. It appears to me that the permanency of such results is the very essence of the ordinary causal space-time description. This seems to me so clear that I have not made a special point of it in my article (= the complementarity paper). ..."

Niels Bohr to Paul Dirac, March 24, 1928 (cont'd): ${ }^{1}$
"... What has been in my mind above all was the endeavour to represent the statistical quantum theoretical description as a natural generalisation of the ordinary causal description and to analyze the reasons why such phrases like a choice of nature present themselves in the description of the actual situation. In this respect it appears to me that the emphasis on the subjective character of the idea of observation is essential. Indeed I believe that the contrast between this idea and the classical idea of isolated objects is decisive for the limitation which characterises the use of all classical concepts in the quantum theory. Especially in relation with the transformation theory the situation may, I think, be described by saying that any such concepts can be used unaltered if only due regard is taken to the unavoidable feature of complementarity."

[^0]"... the necessary condition for making any use of observational results. ..."

What are "observational results"?

What are "observational results"? E.g., Newton's phenomena:2

1. "The circumjovial planets, by radii drawn to the center of Jupiter, describe areas proportional to the times, and their periodic times-the fixed stars being at rest-are as the $3 / 2$ powers of their distances from that center."
2. "The circumsaturnian planets ..."
3. "The orbits of the five primary planets-Mercury, Venus, Mars, Jupiter, and Saturn-encircle the sun."
4. "The periodic times of the five primary planets and of either the sun about the earth or the earth about the sun-the fixed stars being at rest-are as the $3 / 2$ powers of their mean distances from the sun."
5. "The primary planets, by radii drawn to the earth, describe areas in no way proportional to the times but, by radii drawn to the sun, traverse areas proportional to the times."
6. "The moon, by a radius drawn to the center of the earth, describes areas proportional to the times."

Upshot: Physical phenomena can be mathematised.
${ }^{2}$ Isaac Newton, Mathematical Principles of Natural Philosophy, I. B. Cohen (ed.), Berkely and Los Angeles: University of California Press, 1999 [1687], pp. 797-801.

George Boole's "Conditions of Possible Experience" (of statistical data)

"When satisfied they indicate that the data may have, when not satisfied they indicate that the data cannot have resulted from an actual observation." ${ }^{3}$

[^1]
George Boole's "Conditions of Possible Experience" (of statistical data)

"When satisfied they indicate that the data may have, when not satisfied they indicate that the data cannot have resulted from an actual observation." ${ }^{3}$

- Given the rational numbers p_{1}, \ldots, p_{n}, representing the relative frequencies of n (logically connected) events $\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{n}}$:
- What are the necessary and sufficient conditions under which the p_{i} can be realised as probabilities corresponding to the (logically connected) E_{i} in some probability space?

[^2]General algorithm

- Given the logically connected events E_{1}, \ldots, E_{n},

General algorithm

- Given the logically connected events E_{1}, \ldots, E_{n},
- Write down the corresponding (propositional) truth table.

E_{1}	E_{2}	\ldots	E_{n}
0	0	\ldots	1
0	1	\ldots	0
\vdots	\vdots	\vdots	\vdots

General algorithm

- Given the logically connected events E_{1}, \ldots, E_{n},
- Write down the corresponding (propositional) truth table.
- Associate each row with a vector of (extremal) probabilities $\left(p_{1}, \ldots, p_{n}\right)$.

E_{1}	E_{2}	\ldots	E_{n}
0	0	\ldots	1
0	1	\ldots	0
\vdots	\vdots	\vdots	\vdots

General algorithm

- Given the logically connected events E_{1}, \ldots, E_{n},
- Write down the corresponding (propositional) truth table.
- Associate each row with a vector of (extremal) probabilities $\left(p_{1}, \ldots, p_{n}\right)$.
- Take the convex hull of these vectors to yield a polytope.

E_{1}	E_{2}	\ldots	E_{n}
0	0	\ldots	1
0	1	\ldots	0
\vdots	\vdots	\vdots	\vdots

General algorithm

- Given the logically connected events E_{1}, \ldots, E_{n},
- Write down the corresponding (propositional) truth table.
- Associate each row with a vector of (extremal) probabilities $\left(p_{1}, \ldots, p_{n}\right)$.
- Take the convex hull of these vectors to yield a polytope.
- Determine the (linear) inequalities associated with its facets.

E_{1}	E_{2}	\ldots	E_{n}
0	0	\ldots	1
0	1	\ldots	0
\vdots	\vdots	\vdots	\vdots

$$
a_{1} p_{1}+a_{2} p_{2}+\cdots+a_{n} p_{n}+a \geq 0
$$

General algorithm

- Given the logically connected events E_{1}, \ldots, E_{n},
- Write down the corresponding (propositional) truth table.
- Associate each row with a vector of (extremal) probabilities $\left(p_{1}, \ldots, p_{n}\right)$.
- Take the convex hull of these vectors to yield a polytope.
- Determine the (linear) inequalities associated with its facets.

E_{1}	E_{2}	\ldots	E_{n}
0	0	\ldots	1
0	1	\ldots	0
\vdots	\vdots	\vdots	\vdots

$$
a_{1} p_{1}+a_{2} p_{2}+\cdots+a_{n} p_{n}+a \geq 0
$$

Special case: Bell inequalities (see Pitowsky 1994, 103-104)

General (nonlinear) constraint on the correlations between three balanced random variables: ${ }^{4}$

$$
\begin{equation*}
1-\rho_{X Y}^{2}-\rho_{X Z}^{2}-\rho_{Y Z}^{2}+2 \rho_{X Y} \rho_{X Z} \rho_{Y Z} \geq 0, \tag{1}
\end{equation*}
$$

where $\rho_{X Y}=\frac{\langle X Y\rangle}{\sigma_{X} \sigma_{Y}}$ is the Pearson correlation coefficient for two balanced random variables X and Y and σ_{X}, σ_{Y} are the standard deviations of X and Y.
${ }^{4}$ Michael Janas, M. E. C., and Michel Janssen, Understanding Quantum Raffles: Quantum Mechanics on an Informational Approach: Structure and Interpretation, Springer, 2022.

General (nonlinear) constraint on the correlations between three balanced random variables: ${ }^{4}$

$$
\begin{equation*}
1-\rho_{X Y}^{2}-\rho_{X Z}^{2}-\rho_{Y Z}^{2}+2 \rho_{X Y} \rho_{X Z} \rho_{Y Z} \geq 0 \tag{1}
\end{equation*}
$$

Derivation of Eq. (1) relies on the fact that:

$$
\begin{equation*}
\left\langle\left(v_{1} \frac{X}{\sigma_{X}}+v_{2} \frac{Y}{\sigma_{Y}}+v_{3} \frac{Z}{\sigma_{Z}}\right)^{2}\right\rangle \geq 0 . \tag{2}
\end{equation*}
$$

${ }^{4}$ Michael Janas, M. E. C., and Michel Janssen, Understanding Quantum Raffles: Quantum Mechanics on an Informational Approach: Structure and Interpretation, Springer, 2022.

General (nonlinear) constraint on the correlations between three balanced random variables: ${ }^{4}$

$$
\begin{equation*}
1-\rho_{X Y}^{2}-\rho_{X Z}^{2}-\rho_{Y Z}^{2}+2 \rho_{X Y} \rho_{X Z} \rho_{Y Z} \geq 0 \tag{1}
\end{equation*}
$$

Derivation of Eq. (1) relies on the fact that:

$$
\begin{equation*}
\left\langle\left(v_{1} \frac{X}{\sigma_{X}}+v_{2} \frac{Y}{\sigma_{Y}}+v_{3} \frac{Z}{\sigma_{Z}}\right)^{2}\right\rangle \geq 0 . \tag{2}
\end{equation*}
$$

Modelling this relation in a local-hidden variables theory (LHVT):

- Requires a joint probability distribution over the values of X, Y, Z.

[^3]General (nonlinear) constraint on the correlations between three balanced random variables: ${ }^{4}$

$$
\begin{equation*}
1-\rho_{X Y}^{2}-\rho_{X Z}^{2}-\rho_{Y Z}^{2}+2 \rho_{X Y} \rho_{X Z} \rho_{Y Z} \geq 0, \tag{1}
\end{equation*}
$$

Derivation of Eq. (1) relies on the fact that:

$$
\begin{equation*}
\left\langle\left(v_{1} \frac{X}{\sigma_{X}}+v_{2} \frac{Y}{\sigma_{Y}}+v_{3} \frac{Z}{\sigma_{Z}}\right)^{2}\right\rangle \geq 0 . \tag{2}
\end{equation*}
$$

Modelling this relation in a local-hidden variables theory (LHVT):

- Requires a joint probability distribution over the values of X, Y, Z.
- Saturation of the elliptope only as \# outcomes per variable $\rightarrow \infty$.

General elliptope:

Classical tetrahedron (2 values per ticket):

[^4]General (nonlinear) constraint on the correlations between three balanced random variables: ${ }^{4}$

$$
\begin{equation*}
1-\rho_{X Y}^{2}-\rho_{X Z}^{2}-\rho_{Y Z}^{2}+2 \rho_{X Y} \rho_{X Z} \rho_{Y Z} \geq 0 \tag{1}
\end{equation*}
$$

Derivation of Eq. (1) relies on the fact that:

$$
\begin{equation*}
\left\langle\left(v_{1} \frac{X}{\sigma_{X}}+v_{2} \frac{Y}{\sigma_{Y}}+v_{3} \frac{Z}{\sigma_{Z}}\right)^{2}\right\rangle \geq 0 . \tag{2}
\end{equation*}
$$

Modelling this relation in a local-hidden variables theory (LHVT):

- Requires a joint probability distribution over the values of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$.
- Saturation of the elliptope only as \# outcomes per variable $\rightarrow \infty$.

General elliptope:

Classical polyhedron (3 values per ticket):

[^5]General (nonlinear) constraint on the correlations between three balanced random variables: ${ }^{4}$

$$
\begin{equation*}
1-\rho_{X Y}^{2}-\rho_{X Z}^{2}-\rho_{Y Z}^{2}+2 \rho_{X Y} \rho_{X Z} \rho_{Y Z} \geq 0 \tag{1}
\end{equation*}
$$

Derivation of Eq. (1) relies on the fact that:

$$
\begin{equation*}
\left\langle\left(v_{1} \frac{X}{\sigma_{X}}+v_{2} \frac{Y}{\sigma_{Y}}+v_{3} \frac{Z}{\sigma_{Z}}\right)^{2}\right\rangle \geq 0 \tag{2}
\end{equation*}
$$

Modelling this relation in a local-hidden variables theory (LHVT):

- Requires a joint probability distribution over the values of X, Y, Z.
- Saturation of the elliptope only as \# outcomes per variable $\rightarrow \infty$.

General elliptope:

Classical polyhedra (4 and 5 values):

[^6]General (nonlinear) constraint on the correlations between three balanced random variables: ${ }^{4}$

$$
\begin{equation*}
1-\rho_{X Y}^{2}-\rho_{X Z}^{2}-\rho_{Y Z}^{2}+2 \rho_{X Y} \rho_{X Z} \rho_{Y Z} \geq 0, \tag{1}
\end{equation*}
$$

Derivation of Eq. (1) relies on the fact that:

$$
\begin{equation*}
\left\langle\left(v_{1} \frac{X}{\sigma_{X}}+v_{2} \frac{Y}{\sigma_{Y}}+v_{3} \frac{Z}{\sigma_{Z}}\right)^{2}\right\rangle \geq 0 . \tag{2}
\end{equation*}
$$

Modelling this relation in a local-hidden variables theory (LHVT):

- Requires a joint probability distribution over the values of X, Y, Z.
- Saturation of the elliptope only as \# outcomes per variable $\rightarrow \infty$.

Modelling this relation in quantum mechanics (QM):

- Saturation of the elliptope for all values of spin.
- Reason: In QM we can assign a value to a sum without assigning values to the summands.

[^7]$$
\left\langle\left(v_{1} \frac{X}{\sigma_{X}}+v_{2} \frac{Y}{\sigma_{Y}}+v_{3} \frac{Z}{\sigma_{Z}}\right)^{2}\right\rangle \geq 0
$$

Assigning a value to a sum without assigning values to the summands:

- Not possible in classical theory.
- The kinematics of QM are less restrictive (consider the operator $\left.\widehat{\mathrm{S}} \equiv \widehat{\mathrm{S}}_{\mathrm{a}}+\widehat{\mathrm{S}}_{\mathrm{b}}+\widehat{\mathrm{S}}_{\mathrm{c}}\right) .{ }^{5}$
- Kinematical constraints (broad sense): ${ }^{6}$ constraints imposed by a theoretical framework on our physical description of a system independently of the specifics of its dynamics.

[^8]$$
\left\langle\left(v_{1} \frac{X}{\sigma_{X}}+v_{2} \frac{Y}{\sigma_{Y}}+v_{3} \frac{Z}{\sigma_{Z}}\right)^{2}\right\rangle \geq 0
$$

Assigning a value to a sum without assigning values to the summands:

- Not possible in classical theory.
- The kinematics of QM are less restrictive (consider the operator $\left.\widehat{\mathrm{S}} \equiv \widehat{\mathrm{S}}_{\mathrm{a}}+\widehat{\mathrm{S}}_{\mathrm{b}}+\widehat{\mathrm{S}}_{\mathrm{c}}\right) .{ }^{5}$
- Kinematical constraints (broad sense): ${ }^{6}$ constraints imposed by a theoretical framework on our physical description of a system independently of the specifics of its dynamics.

In essence, this is what we mean when we claim that: "QM is all about information" / "QM is all about probabilities."

[^9]In essence, this is what we mean when we claim that: "QM is all about information" / "QM is all about probabilities."

In essence, this is what we mean when we claim that: "QM is all about information" / "QM is all about probabilities."

- Not an ontological claim but a slogan.
- This is a claim about where the conceptual novelty of QM lies: ${ }^{7}$
- In the way that the kinematical constraints of QM constrain probability assignments.
${ }^{7}$ Understanding Quantum Raffles, sec. 6.3; see also Demopoulos, W., On Theories, Harvard University Press, 2022, ch. 4.

In essence, this is what we mean when we claim that: "QM is all about information" / "QM is all about probabilities."

- Not an ontological claim but a slogan.
- This is a claim about where the conceptual novelty of QM lies: ${ }^{7}$
- In the way that the kinematical constraints of QM constrain probability assignments.
- The slogan also conveys the idea that QM is a framework ${ }^{8}$ that can in principle be applied to any type of physical system; e.g., computational systems, the fictitious "quantum bananas" of Jeff Bub's Bananaworld, the "quoins" of Totally Random, and so on.

[^10]Understanding why QM, but not CM, allows us to saturate the elliptope for all values of spin is only one example of a problem that can be solved by appealing exclusively to QM's kinematical constraints.

Understanding why QM, but not CM, allows us to saturate the elliptope for all values of spin is only one example of a problem that can be solved by appealing exclusively to QM's kinematical constraints.

Further examples of physical problems that seemed to call for dynamical solutions but that were solved simply by appealing to quantum theory's kinematics: ${ }^{9}$

- Accounting for the particle term in Einstein's 1909 formula for energy fluctuations in black-body radiation.
- Accounting for the formula for the electric susceptibility of diatomic gases.
- Accounting for why electron orbits seem to depend on which coordinates you choose to impose the quantization condition.
"... What has been in my mind above all was the endeavour to represent the statistical quantum theoretical description as a natural generalisation of the ordinary causal description ..."

Classical mechanics:

- Specifying a system's state yields an answer to every yes-or-no question that can be asked about a particular observable quantity (e.g., "Is the value of the observable A within the range Δ ?").

Classical mechanics:

- Specifying a system's state yields an answer to every yes-or-no question that can be asked about a particular observable quantity (e.g., "Is the value of the observable A within the range Δ ?").
- Classical state is a truthmaker (in a logical sense) for that observable; ${ }^{10}$ i.e., it determines the answer to every yes-or-no question about the quantity irrespective of how we interact with the system.

Classical mechanics:

- Specifying a system's state yields an answer to every yes-or-no question that can be asked about a particular observable quantity (e.g., "Is the value of the observable A within the range Δ ?").
- Classical state is a truthmaker (in a logical sense) for that observable; ${ }^{10}$ i.e., it determines the answer to every yes-or-no question about the quantity irrespective of how we interact with the system.
- This is simultaneously true of all observables. The state determines the answers to all questions concerning all observables in advance.

\vec{p}_{1}	$\overrightarrow{\mathrm{q}}_{1}$	A in $\Delta_{\mathrm{a}} ?$	B in $\Delta_{\mathrm{b}} ?$	\ldots
$\nu_{\mathrm{p}_{1}}^{1}$	$v_{\mathrm{q}_{1}}^{1}$	N	N	
$\nu_{\mathrm{p}_{1}}^{2}$	$\nu_{\mathrm{q}_{1}}^{2}$	N	Y	
$\nu_{\mathrm{p}_{1}}^{3}$	$v_{\mathrm{q}_{1}}^{3}$	N	Y	
etc. \ldots				

[^11]${ }^{11}$ Understanding Quantum Raffles, chs. 1 and 6; see also Pitowsky, I., "Quantum Mechanics as a Theory of Probability," in Demopoulos, W., and Pitowsky, I. (eds.), Physical Theory and its Interpretation, Dordrecht: Springer, 2006.

In QM, states fail to be truthmakers in two senses: ${ }^{11}$

1. The "big" measurement problem: Specifying $|\psi\rangle$ yields, in general, only the probability that the answer to a given experimental question will take on a given value.
${ }^{11}$ Understanding Quantum Raffles, chs. 1 and 6; see also Pitowsky, I., "Quantum Mechanics as a Theory of Probability," in Demopoulos, W., and Pitowsky, I. (eds.), Physical Theory and its Interpretation, Dordrecht: Springer, 2006.

In QM, states fail to be truthmakers in two senses. ${ }^{11}$

1. The "big" measurement problem: Specifying $|\psi\rangle$ yields, in general, only the probability that the answer to a given experimental question will take on a given value.

- Not as much of a departure from classicality as one might think. Conditional on the selection of an observable, observed statistics are describable by a classical probability distribution.
${ }^{11}$ Understanding Quantum Raffles, chs. 1 and 6; see also Pitowsky, I., "Quantum Mechanics as a Theory of Probability," in Demopoulos, W., and Pitowsky, I. (eds.), Physical Theory and its Interpretation, Dordrecht: Springer, 2006.

In QM, states fail to be truthmakers in two senses. ${ }^{11}$

1. The "big" measurement problem: Specifying $|\psi\rangle$ yields, in general, only the probability that the answer to a given experimental question will take on a given value.

- Not as much of a departure from classicality as one might think. Conditional on the selection of an observable, observed statistics are describable by a classical probability distribution.

2. The "small" measurement problem: The classical probability distributions associated with individual observables cannot be embedded into a global classical probability distribution over all observables.
[^12]In QM, states fail to be truthmakers in two senses. ${ }^{11}$

1. The "big" measurement problem: Specifying $|\psi\rangle$ yields, in general, only the probability that the answer to a given experimental question will take on a given value.

- Not as much of a departure from classicality as one might think. Conditional on the selection of an observable, observed statistics are describable by a classical probability distribution.

2. The "small" measurement problem: The classical probability distributions associated with individual observables cannot be embedded into a global classical probability distribution over all observables.

- In QM one can only say that conditional upon inquiring about A, there is a particular probability distribution that one can use to characterise the possible answers to that question.

[^13]In QM, states fail to be truthmakers in two senses. ${ }^{11}$

1. The "big" measurement problem: Specifying $|\psi\rangle$ yields, in general, only the probability that the answer to a given experimental question will take on a given value.

- Not as much of a departure from classicality as one might think. Conditional on the selection of an observable, observed statistics are describable by a classical probability distribution.

2. The "small" measurement problem: The classical probability distributions associated with individual observables cannot be embedded into a global classical probability distribution over all observables.

- In QM one can only say that conditional upon inquiring about A, there is a particular probability distribution that one can use to characterise the possible answers to that question.
- QM's unitary description of a measurement interaction does not, by itself, prefer any one of these (a.k.a. the preferred basis problem in the context of the Everett interpretation).

[^14]
(Slightly) more formally

Classical mechanics:
Quantum mechanics:

- An observable A is represented by $f_{A}(\omega)$ acting on the phase space of a system.

(Slightly) more formally

Classical mechanics:

- An observable A is represented by $f_{A}(\omega)$ acting on the phase space of a system.

Quantum mechanics:

- An observable A is represented by \hat{A} acting on the Hilbert space of a system.

(Slightly) more formally

Classical mechanics:

- An observable A is represented by $f_{A}(\omega)$ acting on the phase space of a system.
- With f_{A} we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.

Quantum mechanics:

- An observable A is represented by \hat{A} acting on the Hilbert space of a system.

(Slightly) more formally

Classical mechanics:

- An observable A is represented by $f_{A}(\omega)$ acting on the phase space of a system.
- With f_{A} we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.

Quantum mechanics:

- An observable A is represented by \hat{A} acting on the Hilbert space of a system.
- With \hat{A} we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.

(Slightly) more formally

Classical mechanics:

- An observable A is represented by $f_{A}(\omega)$ acting on the phase space of a system.
- With f_{A} we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.
- Points in phase space are "truthmakers"

Quantum mechanics:

- An observable A is represented by \hat{A} acting on the Hilbert space of a system.
- With Â we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.

(Slightly) more formally

Classical mechanics:

- An observable A is represented by $f_{A}(\omega)$ acting on the phase space of a system.
- With f_{A} we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.
- Points in phase space are
"truthmakers" in the sense that
- Fixing ω fixes the values for every observable.

Quantum mechanics:

- An observable A is represented by \hat{A} acting on the Hilbert space of a system.
- With \hat{A} we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.

(Slightly) more formally

Classical mechanics:

- An observable \boldsymbol{A} is represented by $f_{A}(\omega)$ acting on the phase space of a system.
- With fa we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.
- Points in phase space are "truthmakers" in the sense that
- Fixing ω fixes the values for every observable.
- $\mathfrak{A}, \mathfrak{B}, \ldots$ embeddable into a global Boolean algebra.

Quantum mechanics:

- An observable A is represented by \hat{A} acting on the Hilbert space of a system.
- With Â we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.

(Slightly) more formally

Classical mechanics:

- An observable \boldsymbol{A} is represented by $f_{A}(\omega)$ acting on the phase space of a system.
- With fa we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.
- Points in phase space are "truthmakers" in the sense that
- Fixing ω fixes the values for every observable.
- $\mathfrak{A}, \mathfrak{B}, \ldots$ embeddable into a global Boolean algebra.

Quantum mechanics:

- An observable A is represented by \hat{A} acting on the Hilbert space of a system.
- With Â we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.
- Vectors in Hilbert space not "truthmakers"

(Slightly) more formally

Classical mechanics:

- An observable \boldsymbol{A} is represented by $f_{A}(\omega)$ acting on the phase space of a system.
- With fa we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.
- Points in phase space are "truthmakers" in the sense that
- Fixing ω fixes the values for every observable.
- $\mathfrak{A}, \mathfrak{B}, \ldots$ embeddable into a global Boolean algebra.

Quantum mechanics:

- An observable A is represented by \hat{A} acting on the Hilbert space of a system.
- With \hat{A} we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.
- Vectors in Hilbert space not "truthmakers" in the sense that
- Fixing $|\psi\rangle$ only fixes

$$
\operatorname{Pr}\left(v_{A} \mid A\right), \operatorname{Pr}\left(v_{B} \mid B\right), \ldots
$$

(Slightly) more formally

Classical mechanics:

- An observable \boldsymbol{A} is represented by $f_{A}(\omega)$ acting on the phase space of a system.
- With f_{A} we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.
- Points in phase space are "truthmakers" in the sense that
- Fixing ω fixes the values for every observable.
- $\mathfrak{A}, \mathfrak{B}, \ldots$ embeddable into a global Boolean algebra.

Quantum mechanics:

- An observable A is represented by \hat{A} acting on the Hilbert space of a system.
- With \hat{A} we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A .
- Vectors in Hilbert space not "truthmakers" in the sense that
- Fixing $|\psi\rangle$ only fixes $\operatorname{Pr}\left(v_{A} \mid A\right), \operatorname{Pr}\left(v_{B} \mid \mathrm{B}\right), \ldots$
. $\mathfrak{A}, \mathfrak{B}, \ldots$ not embeddable into global Boolean algebra.

(Slightly) more formally

Classical mechanics:

- An observable A is represented by $f_{A}(\omega)$ acting on the phase space of a system.
- With f_{A} we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.
- Points in phase space are "truthmakers" in the sense that
- Fixing ω fixes the values for every observable.
- $\mathfrak{A}, \mathfrak{B}, \ldots$ embeddable into a global Boolean algebra.

Quantum mechanics:

- An observable A is represented by \hat{A} acting on the Hilbert space of a system.
- With \hat{A} we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.
- Vectors in Hilbert space not "truthmakers" in the sense that
- Fixing $|\psi\rangle$ only fixes

$$
\operatorname{Pr}\left(v_{A} \mid A\right), \operatorname{Pr}\left(v_{B} \mid \mathrm{B}\right), \ldots
$$

- $\mathfrak{A}, \mathfrak{B}, \ldots$ not embeddable into global Boolean algebra.

How should we construe the wider significance of this?

The "traditional metaphysical picture":

- Dynamical variables like position, momentum, direction of spin, etc. are understood as manifestations of an underlying reality whose properties are such as to give rise to the values of the observable quantities that are revealed in our experiments with physical systems.
- John S. Bell: "Observables are made out of beables." ${ }^{12}$

The "traditional metaphysical picture":

- Dynamical variables like position, momentum, direction of spin, etc. are understood as manifestations of an underlying reality whose properties are such as to give rise to the values of the observable quantities that are revealed in our experiments with physical systems.
- John S. Bell: "Observables are made out of beables." ${ }^{12}$
- Since, in QM, the values of observable (dynamical) quantities cannot in general be consistently interpreted (because of the big and small measurement problems) as representing the antecedently given properties of a physical system (i.e., since there is no Boolean algebra of properties that we can assign to all of the system's observables), there are two options:

[^15]
The "traditional metaphysical picture":

- Dynamical variables like position, momentum, direction of spin, etc. are understood as manifestations of an underlying reality whose properties are such as to give rise to the values of the observable quantities that are revealed in our experiments with physical systems.
- John S. Bell: "Observables are made out of beables." ${ }^{12}$
- Since, in QM, the values of observable (dynamical) quantities cannot in general be consistently interpreted (because of the big and small measurement problems) as representing the antecedently given properties of a physical system (i.e., since there is no Boolean algebra of properties that we can assign to all of the system's observables), there are two options:

1. Posit further physical quantities over and above what is described by QM that can be so interpreted.
2. Argue that, at least in principle, all of the (approximately) classical physical possibilities described by a given state vector are realised in some sense (Everett).
[^16]Informational interpretation:

- Isn't opposed to the traditional metaphysical picture per se.

Informational interpretation:

- Isn't opposed to the traditional metaphysical picture per se.
- This picture would be apt, for instance, if classical mechanics were fundamental.

Informational interpretation:

- Isn't opposed to the traditional metaphysical picture per se.
- This picture would be apt, for instance, if classical mechanics were fundamental.
- But we are also open to the possibility that it is not apt.

Informational interpretation:

- Isn't opposed to the traditional metaphysical picture per se.
- This picture would be apt, for instance, if classical mechanics were fundamental.
- But we are also open to the possibility that it is not apt.
- How we carve nature at the joints is something that should be motivated by physical theory (rather than a priori).

Informational interpretation:

- Isn't opposed to the traditional metaphysical picture per se.
- This picture would be apt, for instance, if classical mechanics were fundamental.
- But we are also open to the possibility that it is not apt.
- How we carve nature at the joints is something that should be motivated by physical theory (rather than a priori).
- Instrumentalist, but need not be construed as anti-realist (it depends on what you mean by this!)
- Cf. Howard Stein: "the issue between realism and instrumentalism seems to me not to be clearly posed; and what I really believe is that between a cogent and enlightened 'realism' and a sophisticated 'instrumentalism' there is no significant difference-no difference that makes a difference." ${ }^{13}$

[^17]Informational interpretation:

- Isn't opposed to the traditional metaphysical picture per se.
- This picture would be apt, for instance, if classical mechanics were fundamental.
- But we are also open to the possibility that it is not apt.
- How we carve nature at the joints is something that should be motivated by physical theory (rather than a priori).
- Instrumentalist, but need not be construed as anti-realist (it depends on what you mean by this!)
- Cf. Howard Stein: "the issue between realism and instrumentalism seems to me not to be clearly posed; and what I really believe is that between a cogent and enlightened 'realism' and a sophisticated 'instrumentalism' there is no significant difference-no difference that makes a difference." ${ }^{13}$
- The important question, for us, is not whether, but how to assign physical properties to what we take to be the external world. ${ }^{14}$

[^18]In other words what's primary, for us, isn't the traditional metaphysical picture.

In other words what's primary, for us, isn't the traditional metaphysical picture.

Modelling quantum correlations using raffle tickets.
What we take to be primary, rather, is the empiricist methodology through which we reason from the values revealed in experiments, carried out under precisely specified experimental conditions, to a picture of the world that is anchored in the contextual models one gives of phenomena under the dynamical assumptions characterising each.

For an informational interpreter, in other words, probabilities are (strictly speaking) always defined relative to a given experimental context; and the picture our theories build up of the world is in this sense essentially a contextual picture (which of course can admit of special cases, of which classical theory is one).

- (i.e., in classical theory, the experimental context can, in a very natural way, be abstracted away from so that we can think of probability assignments as absolute).

For an informational interpreter, in other words, probabilities are (strictly speaking) always defined relative to a given experimental context; and the picture our theories build up of the world is in this sense essentially a contextual picture (which of course can admit of special cases, of which classical theory is one).

- (i.e., in classical theory, the experimental context can, in a very natural way, be abstracted away from so that we can think of probability assignments as absolute).

Visualisation:

Classical tetrahedron (2 values per ticket):

For an informational interpreter, in other words, probabilities are (strictly speaking) always defined relative to a given experimental context; and the picture our theories build up of the world is in this sense essentially a contextual picture (which of course can admit of special cases, of which classical theory is one).

- (i.e., in classical theory, the experimental context can, in a very natural way, be abstracted away from so that we can think of probability assignments as absolute).

Visualisation:

Classical polyhedron (3 values per ticket):

For an informational interpreter, in other words, probabilities are (strictly speaking) always defined relative to a given experimental context; and the picture our theories build up of the world is in this sense essentially a contextual picture (which of course can admit of special cases, of which classical theory is one).

- (i.e., in classical theory, the experimental context can, in a very natural way, be abstracted away from so that we can think of probability assignments as absolute).

Visualisation:

Classical polyhedra (4 and 5 values):

- What is exhibited by the quantum state is, on our view, not, per se, a collection of antecedently given properties possessed by a system, but rather the structure of and interdependencies among the (unitarily related) possible ways that one can effectively characterise a system in the context of a physical interaction.
- What is exhibited by the quantum state is, on our view, not, per se, a collection of antecedently given properties possessed by a system, but rather the structure of and interdependencies among the (unitarily related) possible ways that one can effectively characterise a system in the context of a physical interaction.
- Indeed this is no less true of a classical state description (cf. Erik Curiel's characterisation of an "abstract classical system" ${ }^{15}$).
- What is exhibited by the quantum state is, on our view, not, per se, a collection of antecedently given properties possessed by a system, but rather the structure of and interdependencies among the (unitarily related) possible ways that one can effectively characterise a system in the context of a physical interaction.
- Indeed this is no less true of a classical state description (cf. Erik Curiel's characterisation of an "abstract classical system" ${ }^{15}$).
- But because the probability distributions over the values of every classical observable are determined independently of whether a physical interaction through which one can assess those values is actually made, there is an invitation to think of them as originating in the properties of an underlying physical system that exists in a particular way irrespective of anything external.

[^19]- What is exhibited by the quantum state is, on our view, not, per se, a collection of antecedently given properties possessed by a system, but rather the structure of and interdependencies among the (unitarily related) possible ways that one can effectively characterise a system in the context of a physical interaction.
- Indeed this is no less true of a classical state description (cf. Erik Curiel's characterisation of an "abstract classical system" ${ }^{15}$).
- But because the probability distributions over the values of every classical observable are determined independently of whether a physical interaction through which one can assess those values is actually made, there is an invitation to think of them as originating in the properties of an underlying physical system that exists in a particular way irrespective of anything external.
- The more complex structure of observables related by QM does not similarly invite the inference from the values of observable quantities to the properties of an underlying system in that sense.

[^20]- That said, in a given measurement context, which we can by assumption describe-effectively-in Boolean terms, one can give a dynamical model of the system, for that context, also in such terms.
- That said, in a given measurement context, which we can by assumption describe-effectively-in Boolean terms, one can give a dynamical model of the system, for that context, also in such terms.
- Such a model does not suffer-in a given measurement context-from the "small" measurement problem (since the observables associated with that context commute).
- That said, in a given measurement context, which we can by assumption describe-effectively-in Boolean terms, one can give a dynamical model of the system, for that context, also in such terms.
- Such a model does not suffer-in a given measurement context-from the "small" measurement problem (since the observables associated with that context commute).
- It does suffer from the "big" measurement problem; however in any given measurement context it will always be possible to-effectively-interpret the indeterminacy of individual measurement results, in a given experimental run, as stemming from our inability to precisely specify some relevant physical parameter in whatever dynamical model that we use to conceptualise the phenomena in that context.
- That said, in a given measurement context, which we can by assumption describe-effectively-in Boolean terms, one can give a dynamical model of the system, for that context, also in such terms.
- Such a model does not suffer-in a given measurement context-from the "small" measurement problem (since the observables associated with that context commute).
- It does suffer from the "big" measurement problem; however in any given measurement context it will always be possible to-effectively-interpret the indeterminacy of individual measurement results, in a given experimental run, as stemming from our inability to precisely specify some relevant physical parameter in whatever dynamical model that we use to conceptualise the phenomena in that context.
- Moreover, the probability distributions that one can assign in the various measurement contexts associated with a system, on the basis of a given state $|\psi\rangle$, are quantitatively related to one another in a consistent way that is constrained by the kinematical framework of quantum mechanics.
- But can nothing really be said, on the informational view, about what the world is like independently of observation?
- But can nothing really be said, on the informational view, about what the world is like independently of observation?
- On the contrary:
(a) Non-dynamical quantities (mass, spin, charge, etc.): valid regardless of experimental context.
(b) Dynamical quantities: The world is such that all of the effectively classical (i.e., Boolean) probabilistic pictures that one can draw of it, under the precisely specified experimental conditions corresponding to each of them, are precisely relatable to one another in the way described by quantum mechanics. That's not a trivial thing!
- But can nothing really be said, on the informational view, about what the world is like independently of observation?
- On the contrary:
(a) Non-dynamical quantities (mass, spin, charge, etc.): valid regardless of experimental context.
(b) Dynamical quantities: The world is such that all of the effectively classical (i.e., Boolean) probabilistic pictures that one can draw of it, under the precisely specified experimental conditions corresponding to each of them, are precisely relatable to one another in the way described by quantum mechanics. That's not a trivial thing!
- Does (b) depend, physically or metaphysically, on the existence of conscious observers?
- But can nothing really be said, on the informational view, about what the world is like independently of observation?
- On the contrary:
(a) Non-dynamical quantities (mass, spin, charge, etc.): valid regardless of experimental context.
(b) Dynamical quantities: The world is such that all of the effectively classical (i.e., Boolean) probabilistic pictures that one can draw of it, under the precisely specified experimental conditions corresponding to each of them, are precisely relatable to one another in the way described by quantum mechanics. That's not a trivial thing!
- Does (b) depend, physically or metaphysically, on the existence of conscious observers?
- No. Rather: a schematic representation of what (relevantly) constitutes an observer-a classical conditional probability distribution (a.k.a. "Boolean frame")-is being used as a formal tool with which to describe how the various dynamical possibilities ("propensities") that are implicit in the physical world are necessarily related to one another. ${ }^{16}$

[^21]Schematising the observer as a postulate
Howard Stein: "It would ... be impossible to understand a theory, as anything but a purely mathematical structure-impossible, that is, to understand a theory as a theory of physics-if we had no systematic way to put the theory into connection with observation (or experience)." ${ }^{17}$
Erik Curiel: "... contrary to contemporary standard philosophical views of physical theories, one cannot understand the structure and nature of our knowledge of physics without an analysis of the way that observers (and, more generally, measuring instruments and experimental arrangements) are modelled in theory." ${ }^{18}$

[^22]
Schematising the observer as a postulate

Howard Stein: "It would ... be impossible to understand a theory, as anything but a purely mathematical structure-impossible, that is, to understand a theory as a theory of physics-if we had no systematic way to put the theory into connection with observation (or experience)." ${ }^{17}$

Erik Curiel: "... contrary to contemporary standard philosophical views of physical theories, one cannot understand the structure and nature of our knowledge of physics without an analysis of the way that observers (and, more generally, measuring instruments and experimental arrangements) are modelled in theory." 18

- In the context of classical theory, for all practical purposes, we need to employ a schematic representation of an observer if theoretical claims are to have epistemic content at all.

[^23]
Schematising the observer as a postulate

Howard Stein: "It would ... be impossible to understand a theory, as anything but a purely mathematical structure-impossible, that is, to understand a theory as a theory of physics-if we had no systematic way to put the theory into connection with observation (or experience)." ${ }^{17}$

Erik Curiel: "... contrary to contemporary standard philosophical views of physical theories, one cannot understand the structure and nature of our knowledge of physics without an analysis of the way that observers (and, more generally, measuring instruments and experimental arrangements) are modelled in theory." ${ }^{18}$

- In the context of classical theory, for all practical purposes, we need to employ a schematic representation of an observer if theoretical claims are to have epistemic content at all.
- On a (neo-)Bohrian understanding of quantum theory, QM should be understood as elevating this insight to the level of a postulate.

[^24]For a (neo-)Bohrian:

- Physics is in the business of describing the true empirical relations that obtain in the world.

For a (neo-)Bohrian:

- Physics is in the business of describing the true empirical relations that obtain in the world.
- Of course, that doesn't amount to the description of a substance existing in itself in the traditional metaphysical sense. ${ }^{19}$

For a (neo-)Bohrian:

- Physics is in the business of describing the true empirical relations that obtain in the world.
- Of course, that doesn't amount to the description of a substance existing in itself in the traditional metaphysical sense. ${ }^{19}$
- But on the empiricist perspective embraced by the informational interpreter we were never committed to this.

Our view in a nutshell:

- QM is about probabilities. These are understood to be (to use von Neumann's phrase) "given from the start", ${ }^{20}$
- i.e., as objectively (i.e., non-contextually) associated with a given concrete measurement context ("propensities").
${ }^{20}$ Quoted in Bub, Jeffrey, "Foreword," in Understanding Quantum Raffles, op. cit., p. x.

Our view in a nutshell:

- QM is about probabilities. These are understood to be (to use von Neumann's phrase) "given from the start", ${ }^{20}$
- i.e., as objectively (i.e., non-contextually) associated with a given concrete measurement context ("propensities").
- QM describes the relations between these in an in general non-Boolean way, which amounts to saying that the various probability distributions that we can use to effectively characterise the phenomena associated with commuting sets of observables cannot be embedded consistently into a global probability distribution over the simultaneous values of all observables.
${ }^{20}$ Quoted in Bub, Jeffrey, "Foreword," in Understanding Quantum Raffles, op. cit., p. x.

Our view in a nutshell (cont'd):

- Despite this, QM provides, in any given measurement context, a recipe through which one can acquire information concerning a quantum system through interactions with objects whose relevant parameters can-effectively-be described using classical, i.e., Boolean, means, as being either "on" or "off" with a certain probability determined by the dynamical properties of the system according to the dynamical model that one constructs of it in that context.

Our view in a nutshell (cont'd):

- Despite this, QM provides, in any given measurement context, a recipe through which one can acquire information concerning a quantum system through interactions with objects whose relevant parameters can-effectively-be described using classical, i.e., Boolean, means, as being either "on" or "off" with a certain probability determined by the dynamical properties of the system according to the dynamical model that one constructs of it in that context.
- In other words, QM allows us to do physics in much the same way as we always have.

Our view in a nutshell (cont'd):

- Despite this, QM provides, in any given measurement context, a recipe through which one can acquire information concerning a quantum system through interactions with objects whose relevant parameters can-effectively-be described using classical, i.e., Boolean, means, as being either "on" or "off" with a certain probability determined by the dynamical properties of the system according to the dynamical model that one constructs of it in that context.
- In other words, QM allows us to do physics in much the same way as we always have.
- But it does not follow from any of this that nature itself must be such as to allow (in a natural way, at any rate) for a globally Boolean description of all aspects of all dynamical phenomena that physics is concerned to describe. ${ }^{21}$

Thanks!

Extra slides

$$
\begin{aligned}
|\psi\rangle_{\mathcal{S}} & =\alpha\left|\mathrm{b}_{1}^{+}\right\rangle+\beta\left|\mathrm{b}_{1}^{-}\right\rangle \\
& =\alpha^{\prime}\left|\mathrm{b}_{2}^{+}\right\rangle+\beta^{\prime}\left|\mathrm{b}_{2}^{-}\right\rangle .
\end{aligned}
$$

What does this mean on the informational interpretation?

- Coupling the degrees of freedom of \mathcal{S} to those of a further system \mathcal{M} will yield a collection of unitarily-related conditional probability distributions over the possible outcomes of an assessment of \mathcal{M} as described with respect to a particular basis b_{m}.
"In the treatment of atomic problems, actual calculations are most conveniently carried out with the help of a Schrödinger state function, from which the statistical laws governing observations obtainable under specified conditions can be deduced by definite mathematical operations. It must be recognized, however, that we are here dealing with a purely symbolic procedure, the unambiguous physical interpretation of which in the last resort requires a reference to a complete experimental arrangement." ${ }^{22}$

[^25]What about the universe as a whole? (Is it really permitted to talk about the whole universe for a (neo-)Bohrian)?

What about the universe as a whole? (Is it really permitted to talk about the whole universe for a (neo-)Bohrian)?

- Yes (Bub \& Pitowsky, 2010, p. 449 ff.; Janas, MEC, \& Janssen, 2022, pp. 216)
- What's important isn't that a particular system represented by \mathcal{M} actually exists (in the same way that it's inessential for observers to actually exist as long as we can represent them schematically).

What about the universe as a whole? (Is it really permitted to talk about the whole universe for a (neo-)Bohrian)?

- Yes (Bub \& Pitowsky, 2010, p. 449 ff.; Janas, MEC, \& Janssen, 2022, pp. 216)
- What's important isn't that a particular system represented by \mathcal{M} actually exists (in the same way that it's inessential for observers to actually exist as long as we can represent them schematically).
- What's important is the dynamical context that \mathcal{M} represents. It's always possible to imagine a dynamical physical interaction with the empirically accessible degrees of freedom of any physical system—because, conceptually, that is just what we mean when we say that a physical system is empirically accessible-regardless of that system's size.

What about the universe as a whole? (Is it really permitted to talk about the whole universe for a (neo-)Bohrian)?

- Yes (Bub \& Pitowsky, 2010, p. 449 ff.; Janas, MEC, \& Janssen, 2022, pp. 216)
- What's important isn't that a particular system represented by \mathcal{M} actually exists (in the same way that it's inessential for observers to actually exist as long as we can represent them schematically).
- What's important is the dynamical context that \mathcal{M} represents. It's always possible to imagine a dynamical physical interaction with the empirically accessible degrees of freedom of any physical system—because, conceptually, that is just what we mean when we say that a physical system is empirically accessible-regardless of that system's size.
- The further question of whether it "really" makes sense to talk about the empirical accessibility of the universe as a whole is a philosophical question.

What about the universe as a whole? (Is it really permitted to talk about the whole universe for a (neo-)Bohrian)?

- Yes (Bub \& Pitowsky, 2010, p. 449 ff.; Janas, MEC, \& Janssen, 2022, pp. 216)
- What's important isn't that a particular system represented by \mathcal{M} actually exists (in the same way that it's inessential for observers to actually exist as long as we can represent them schematically).
- What's important is the dynamical context that \mathcal{M} represents. It's always possible to imagine a dynamical physical interaction with the empirically accessible degrees of freedom of any physical system—because, conceptually, that is just what we mean when we say that a physical system is empirically accessible-regardless of that system's size.
- The further question of whether it "really" makes sense to talk about the empirical accessibility of the universe as a whole is a philosophical question.
- But whatever one thinks about this issue, it makes no difference to the basic methodological point that, I want to argue, forms the core of the informational / (neo-)Bohrian view, which is that systems are modelled as open on such an interpretation whenever it makes sense to model a system at all.

[^0]: ${ }^{1}$ In Jørgen Kalckar (ed.), Niels Bohr, Collected Works, Volume 6, North-Holland/Elsevier, 1985, pp. 45-46.

[^1]: ${ }^{3}$ George Boole, "On the Theory of Probabilities," Philos. Trans. R. Soc. Lond. 152 (1862), p. 229. Cited in Pitowsky, I., "George Boole's 'Conditions of Possible Experience' and the Quantum Puzzle," The British Journal for the Philosophy of Science 45, 1994, p. 100.

[^2]: ${ }^{3}$ George Boole, "On the Theory of Probabilities," Philos. Trans. R. Soc. Lond. 152 (1862), p. 229. Cited in Pitowsky, I., "George Boole's 'Conditions of Possible Experience' and the Quantum Puzzle," The British Journal for the Philosophy of Science 45, 1994, p. 100.

[^3]: ${ }^{4}$ Michael Janas, M. E. C., and Michel Janssen, Understanding Quantum Raffles: Quantum Mechanics on an Informational Approach: Structure and Interpretation, Springer, 2022.

[^4]: ${ }^{4}$ Michael Janas, M. E. C., and Michel Janssen, Understanding Quantum Raffles: Quantum Mechanics on an Informational Approach: Structure and Interpretation, Springer, 2022.

[^5]: ${ }^{4}$ Michael Janas, M. E. C., and Michel Janssen, Understanding Quantum Raffles: Quantum Mechanics on an Informational Approach: Structure and Interpretation, Springer, 2022.

[^6]: ${ }^{4}$ Michael Janas, M. E. C., and Michel Janssen, Understanding Quantum Raffles: Quantum Mechanics on an Informational Approach: Structure and Interpretation, Springer, 2022.

[^7]: ${ }^{4}$ Michael Janas, M. E. C., and Michel Janssen, Understanding Quantum Raffles: Quantum Mechanics on an Informational Approach: Structure and Interpretation, Springer, 2022.

[^8]: ${ }^{5}$ See von Neumann, J., "Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik," Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse. Nachrichten, p. 249, n. 9.
 ${ }^{6}$ Understanding Quantum Raffles, ch. 1; see also Janssen, M., "Drawing the Line between Kinematics and Dynamics in Special Relativity," Studies in History and Philosophy of Modern Physics 40, pp. 26-52.

[^9]: ${ }^{5}$ See von Neumann, J., "Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik," Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse. Nachrichten, p. 249, n. 9.
 ${ }^{6}$ Understanding Quantum Raffles, ch. 1; see also Janssen, M., "Drawing the Line between Kinematics and Dynamics in Special Relativity," Studies in History and Philosophy of Modern Physics 40, pp. 26-52.

[^10]: ${ }^{7}$ Understanding Quantum Raffles, sec. 6.3; see also Demopoulos, W., On Theories, Harvard University Press, 2022, ch. 4.
 ${ }^{8}$ See: Aaronson, S., Quantum Computing Since Democritus, Cambridge University Press, 2013; Nielsen, M. A. and Chuang, I. L., Quantum Computation and Information, Cambridge University Press, 2016; Wallace, D., "On the Plurality of Quantum Theories: Quantum Theory as a Framework, and its Implications for the Quantum Measurement Problem," in S. French and J. Saatsi (eds.) Realism and the Quantum, Oxford University Press, 2019; Understanding Quantum Raffles, chs. 1, 6.

[^11]: ${ }^{10}$ Bub, J., and Pitowsky, I., "Two Dogmas About Quantum Mechanics," in Saunders et al. (eds.), Many Worlds? Everett, Quantum Theory, and Reality, Oxford University Press, 2010, p. 433.

[^12]: ${ }^{11}$ Understanding Quantum Raffles, chs. 1 and 6; see also Pitowsky, I., "Quantum Mechanics as a Theory of Probability," in Demopoulos, W., and Pitowsky, I. (eds.), Physical Theory and its Interpretation, Dordrecht: Springer, 2006.

[^13]: ${ }^{11}$ Understanding Quantum Raffles, chs. 1 and 6; see also Pitowsky, I., "Quantum Mechanics as a Theory of Probability," in Demopoulos, W., and Pitowsky, I. (eds.), Physical Theory and its Interpretation, Dordrecht: Springer, 2006.

[^14]: ${ }^{11}$ Understanding Quantum Raffles, chs. 1 and 6; see also Pitowsky, I., "Quantum Mechanics as a Theory of Probability," in Demopoulos, W., and Pitowsky, I. (eds.), Physical Theory and its Interpretation, Dordrecht: Springer, 2006.

[^15]: ${ }^{12}$ Bell, J. S., "Subject and Object," in Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, 1987, p. 41, emphasis in original.

[^16]: ${ }^{12}$ Bell, J. S., "Subject and Object," in Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, 1987, p. 41, emphasis in original.

[^17]: ${ }^{13}$ Stein, H. "Yes, but. . . Some Skeptical Remarks on Realism and Anti-Realism," Dialectica 43, 1989, p. 61.

[^18]: ${ }^{13}$ Stein, H. "Yes, but. . . Some Skeptical Remarks on Realism and Anti-Realism," Dialectica 43, 1989, p. 61.
 14 Understanding Quantum Raffles, pp. 8-10; Cf. Perović, S., From Data to Quanta - Niels Bohr's Vision of Physics, University of Chicago Press, p. 118.

[^19]: ${ }^{15}$ Curiel, E., "Classical Mechanics is Lagrangian; It is Not Hamiltonian," The British Journal for Philosophy of Science 65, 2014, sec. 3.

[^20]: ${ }^{15}$ Curiel, E., "Classical Mechanics is Lagrangian; It is Not Hamiltonian," The British Journal for Philosophy of Science 65, 2014, sec. 3.

[^21]: ${ }^{16}$ Cf. Curiel, E. "Schematizing the Observer and the Epistemic Content of Theories," Studies in History and Philosophy of Modern Physics, forthcoming (2022, arXiv:1903.02182v3).

[^22]: ${ }^{17}$ Stein, H. "Some Reflections on the Structure of Our Knowledge in Physics," In Logic, Methodology and Philosophy of Science, Elsevier (1994).
 ${ }^{18}$ Curiel, "Schematizing the Observer," p. 1.

[^23]: ${ }^{17}$ Stein, H. "Some Reflections on the Structure of Our Knowledge in Physics," In Logic, Methodology and Philosophy of Science, Elsevier (1994).
 ${ }^{18}$ Curiel, "Schematizing the Observer," p. 1.

[^24]: ${ }^{17}$ Stein, H. "Some Reflections on the Structure of Our Knowledge in Physics," In Logic, Methodology and Philosophy of Science, Elsevier (1994).
 ${ }^{18}$ Curiel, "Schematizing the Observer," p. 1.

[^25]: ${ }^{22}$ Bohr, N., "Quantum Physics and Philosophy," in Klibansky, R. (ed.), Philosophy in the Mid-Century: A Survey, Firenze: La Nuova Italia Editrice, 1958, pp. 392-393.

