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Vector space: a nonempty set V whose elements are referred to as
vectors:

· ordered n-tuples of numbers ψ = (z1, z2, . . . , zn) satisfying:

· Vector addition: ψ+ φ = χ ∈ V.

E.g. (1, 4, 3, 2) + (3, 9, 8, 4) = (4, 13, 11, 6)

· Scalar multiplication: z ·ψ = ξ ∈ V.

E.g., 5 · (3, 2, 4, 3) = (15, 10, 20, 15).

· zero vector: 0 s.t. ψ+ 0 = 0 +ψ = ψ.

Our vector space:

Cn: vector space of n-tuples of complex numbers:

c = a+ bi, where i =
√
−1, a, b ∈ R.
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Column matrix notation for vectors:

(c1, c2, . . . , cn) ⇒

c1
c2
...
cn



Addition:


c1
c2
...
cn

+


c ′1
c ′2
...
c ′n

 =


c1 + c

′
1

c2 + c
′
2

...
cn + c

′
n



Scalar multiplication: c ·


c1
c2
...
cn

 =


c · c1
c · c2

...
c · cn
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Dirac notation:

“Ket”

|ψ〉 ≡


c1
c2
...
cn


“Bra”
〈ψ| ≡

[
c∗1 c∗2 . . . c∗n

]
c∗: complex conjugation: i⇒ −i.

c∗ = (a+ bi)∗ = a− bi.

“Bra” and “Ket” ⇒ “Bra-ket”
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Spanning set

A set of vectors {|v1〉, |v2〉, . . . |vn〉} spans a vector space V if any
vector in V can be expressed as a linear combination of vectors in
that set.

E.g., |v1〉 ≡
[
1

0

]
, |v2〉 ≡

[
0

1

]
spans C2, since any vector |ψ〉 ∈ C2 can be written as:

|ψ〉 = c1|v1〉+ c2|v2〉.

A vector space may have more than one spanning set.

E.g., |u1〉 ≡ 1√
2

[
1

1

]
, |u2〉 ≡ 1√

2

[
1

−1

]
also spans C2.
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Analogy:

x and y span the space, and so do x ′ and y ′.
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Linear dependence

A set of non-zero vectors {|v1〉, |v2〉, . . . |vn〉} is linearly dependent if
one vector from the set can be written as a linear combination of
the other vectors in the set.

E.g., |v1〉 ≡
[
1

0

]
, |v2〉 ≡

[
0

1

]
, and |u1〉 ≡ 1√

2

[
1

1

]
are linearly dependent, since |u1〉 = 1√

2
|v1〉+ 1√

2
|v2〉

Basis for V

A set of linearly independent vectors which spans the vector space
V is called a basis for V.

|v1〉 ≡ |0〉 ≡
[
1

0

]
, |v2〉 ≡ |1〉 ≡

[
0

1

]
: “computational” basis for C2

|u1〉 ≡ |+〉 ≡ 1√
2

[
1

1

]
, |u2〉 ≡ |−〉 ≡ 1√

2

[
1

−1

]
: “+,-” basis for C2.
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Dimension of a vector space

Any basis of the vector space V will always contain the same
number of elements: dV . We call dV the dimension of V.

E.g., C2 is a 2-dimensional space. Its bases, which include {|0〉, |1〉}
and {|+〉, |−〉} have two elements each.
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Dual vector

The dual of a ket |ψ〉 is its corresponding bra 〈ψ|.

Calculate by taking the adjoint of the original vector:
〈ψ| = (|ψ〉)†.

Adjoint of a matrix M (recall: vectors are column matrices!):[
a b

c d

]†
=

[
a∗ c∗

b∗ d∗

]
I.e., turn rows into columns and take the conjugate of every entry.

Adjoint of a vector:

(|ψ〉)† =


c1
c2
...
cn


†

=
[
c∗1 c∗2 . . . c∗n

]
= 〈ψ|
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Inner product

〈a|b〉: maps two vectors |a〉, |b〉 to a complex number c.

E.g.,

〈0|1〉 = (|0〉)†|1〉 =
[
1

0

]† [
0

1

]
=
[
1 0

] [0
1

]
= 0.

Note: when the inner product of two vectors |a〉 and |b〉 is equal to
0, we say they are orthogonal.

Norm (a.k.a. length) of a vector:

‖ |u〉 ‖ =
√
〈u|u〉

Normalising a vector

To normalise a vector, divide it by its norm: |u〉
‖ |u〉 ‖ .

Result (if |u〉 6= 0) is always a unit vector; i.e., it has length = 1.
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Orthonormal basis

The members of a set {|v1〉, . . . , |vn〉} of vectors are mutually
orthogonal when the inner product of any member with any other
member is 0; i.e., when 〈vi|vk〉 = 0 for all |vi〉, |vk〉 s.t. i 6= k.

When each member of such a set is normalised, the set is called an
orthonormal set.

When the members are also linearly independent, then if the set
spans the vector space V, the set is an orthonormal basis for V.

E.g., {|0〉, |1〉} and {|+〉, |−〉} are both orthonormal bases of C2.
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Any vector in V can be expressed as a linear combination of
elements of the orthonormal basis

∀|ψ〉 ∈ C2 : |ψ〉 = α|0〉+ β|1〉

Similarly for any other orthonormal bases of C2

E.g.,

∀|ψ〉 ∈ C2 : |ψ〉 = γ|+〉+ δ|−〉

Note: inner products remain invariant under change of basis (so
the length of a vector, 〈v|v〉, also remains invariant).
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Linear operator on a vector space V

Consider: a function A which takes a vector |v〉 ∈ V to the vector
A|v〉 = |v ′〉 ∈ V.

If A is “linear”, i.e.: A(α|ψ〉+ β|φ〉) = αA|ψ〉+ βA|φ〉, then A is
called a linear operator on V.

Some (trivial) examples:

· I (identity operator): I|v〉 = |v〉.
· /0 (zero operator): /0|v〉 = 0.
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Linear operators on C2 can be represented as 2× 2 matrices.

E.g., the Pauli matrices:

I ≡
[
1 0

0 1

]
X ≡

[
0 1

1 0

]
Y ≡

[
0 −i
i 0

]
Z ≡

[
1 0

0 −1

]
Note: sometimes also referred to as σ0, σ1, σ2, σ3, or as
σI, σX, σY , σZ.

Example: X|0〉 =
[
0 1

1 0

] [
1

0

]
=

[
0

1

]
= |1〉.

X is also known as the “NOT” operator.

Example: XX|0〉 =
[
0 1

1 0

] [
0 1

1 0

] [
1

0

]
=

[
0 1

1 0

] [
0

1

]
=

[
1

0

]
= |0〉.
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Outer product representation of a linear operator

|u〉〈v| is called an outer product.

We define it so that:
(
|u〉〈v|

)
|w〉 = |u〉〈v|w〉 = 〈v|w〉|u〉.

I.e., it is the operator that results in 〈v|w〉|u〉 when acting on |w〉.

Linear combinations of outer products are also possible, e.g.:
c1|α〉〈β|+ c2|γ〉〈δ|.

For example, the Pauli Z operator:

[
1 0

0 −1

]
can be represented as:

Z = |0〉〈0|− |1〉〈1|.

I.e.,

[
1

0

] [
1 0

]
−

[
0

1

] [
0 1

]
=

[
1 0

0 0

]
−

[
0 0

0 1

]
=

[
1 0

0 −1

]
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Completeness (a.k.a closure) relation

Let {|u1〉, |u2〉, . . . , |un〉} be an orthonormal basis for V.

So any |v〉 ∈ V can be expressed as
|v〉 = c1|u1〉+ c2|u2〉+ · · ·+ cn|un〉 =

∑
i ci|ui〉.

Now consider:
(∑

i |ui〉〈ui|
)
|v〉 =

∑
i |ui〉〈ui|v〉.

Note that 〈ui|v〉 is just a complex number corresponding to the
length of v ‘in the direction of’ ui. So:∑
i |ui〉〈ui|v〉 =

∑
i ci|ui〉 = |v〉.

Since this is true for any |v〉, it must be that
∑
i |ui〉〈ui| = I

This is the completeness relation.
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Converting between outer product and matrix representation.

Let A be a linear operator, and apply the completeness relation
twice:

A = IAI =

(∑
i

|ui〉〈ui|

)
A

(∑
j

|uj〉〈uj|

)
=

∑
i,j

〈ui|A|uj〉|ui〉〈uj|.

A =

〈u1|A|u1〉 . . . 〈u1|A|un〉
...

. . .
...

〈un|A|u1〉 . . . 〈un|A|un〉


Note that both the outer product and matrix representation are
relative to a particular basis.
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Eigenvectors and eigenvalues

|ψ〉 is an eigenvector of a linear operator A. . . if applying A to |ψ〉
only produces a multiple, a|ψ〉, of |ψ〉, . . . where a is a complex
number, called an eigenvalue of A.

I.e., whenever A|ψ〉 = a|ψ〉, then |ψ〉 is an eigenvector of A with
eigenvalue a.
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Hermitian Adjoint (a.k.a Hermitian conjugate)

To compute the Hermitian adjoint of any expression,

· c⇒ c∗

· |a〉⇒ 〈a|
· 〈a| ⇒ |a〉
· order of products of operators/bras/kets is reversed.

E.g.,

(cA)† = c∗A†(
|ψ〉
)†

= 〈ψ|(
〈ψ|
)†

= |ψ〉
(|ψ〉〈φ|)† = |φ〉〈ψ|

(AB)† = B†A†(
A|ψ〉

)†
= 〈ψ|A†(

AB|ψ〉
)†

= 〈ψ|B†A†

Note: A† = (|ψ〉〈φ|)† =
[
a b

c d

]†
=

[
a∗ c∗

b∗ d∗

]
= |φ〉〈ψ|
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Important types of operators

Hermitian operator (a.k.a self-adjoint)

A = A†.

Examples: Pauli I, X, Y, Z

Unitary operator

AA† = A†A = I

Examples: Pauli I, X, Y, Z

Pauli operators are both unitary and Hermitian (this is not
typical!).

Normal operator: AA† = A†A.

Positive operator:

· Positive semidefinite: 〈ψ|A|ψ〉 ≥ 0. (a.k.a. “positive”)

· Positive definite: 〈ψ|A|ψ〉 > 0.
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Projection operator

Let W be a k-dimensional subspace of a vector space V.

There exists an orthonormal basis |u1〉 . . . |ud〉 for V such that
|u1〉 . . . |uk〉 is an orthonormal basis for W.

Define: P ≡
∑k
i=1 |ui〉〈ui| to be the projector onto W.

Properties:

Hermitian: P = P†

Idempotent: PP = P2 = P
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Some important relationships

Positive operators are Hermitian.

Projection operators are Hermitian.

Hermitian operators are normal.

Spectral decomposition theorem: normal operators are always
diagonalisable (Nielsen & Chuang, p. 72)

I.e., a normal operator A acting on a vector space V can always be
decomposed into:

A =
∑
i

λi|ui〉〈ui|,

where the {|ui〉}, which form an orthonormal basis for V, are
eigenvectors of A with eigenvalues λi.
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The commutator

In matrix arithmetic AB 6= BA in general.

The commutator between two operators A and B is defined as:

[A,B] ≡ AB− BA.

When [A,B] = 0, the operators commute; i.e., when [A,B] = 0,
AB = BA.

Note that:

[A,B+ C] = [A,B] + [A,C],
[A,BC] = [A,B]C+ B[A,C].
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Tensor product – Combining vector spaces

The tensor product V ⊗W between two vector spaces V and W
combines them into one larger vector space.

Dimensionality of the larger space is the product of the individual
dimensionalities; i.e.: dV · dW .

We also refer to products of elements of V and W as ‘tensor
products’: |v〉 ⊗ |w〉 (where |v〉 ∈ V and |w〉 ∈W).

The elements of of the space V ⊗W are just all linear
combinations of these ‘element tensor products’.
E.g., α|v1〉 ⊗ |w1〉+ β|v2〉 ⊗ |w2〉

An orthonormal basis for the space V ⊗W is given by taking the
tensor products of each of the elements of the orthonormal bases
of V and W.

E.g., let V =W = C2, then an orthonormal basis for C2 ⊗ C2 is:

{|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉}.
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Basic properties of the tensor product of vectors in V and W

· c
(
|v〉 ⊗ |w〉

)
=
(
c|v〉

)
⊗ |w〉 = |v〉 ⊗ (c|w〉).

·
(
|v1〉+ |v2〉

)
⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉.

· |v〉 ⊗
(
|w1〉+ |w2〉

)
= |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉.

· |v〉 ⊗ |w〉 = |w〉 ⊗ |v〉
(i.e., behaves sort of like multiplication).

Inner products on tensor product spaces

Let |ψ〉 = |α〉 ⊗ |β〉, |φ〉 = |γ〉 ⊗ |δ〉.
Then 〈ψ|φ〉 =

(
〈α|⊗ 〈β|

)(
|γ〉 ⊗ |δ〉

)
= 〈α|γ〉〈β|δ〉.
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Linear operators on V ⊗W

Let |v〉 ∈ V, |w〉 ∈W and let A be a linear operator on V and B
be a linear operator on W.

Then the linear operator A⊗ B on the vector space V ⊗W is
defined as:(
A⊗ B

)(
|v〉 ⊗ |w〉

)
≡ A|v〉 ⊗ B|w〉.

In general:(
A⊗ B

)(∑
i ai|vi〉 ⊗ |wi〉

)
≡

∑
i aiA|vi〉 ⊗ B|wi〉

E.g.,(
A⊗B

)(
|v1〉⊗ |w1〉+ |v2〉⊗ |w2〉

)
= A|v1〉⊗B|w1〉+A|v2〉⊗B|w2〉.

Note: if A and B are Hermitian, then so is A⊗ B, and similarly if
A and B are unitary, then so is A⊗ B.
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Tensor product of two matrices

Recall: X ≡
[
0 1

1 0

]
, Y ≡

[
0 −i
i 0

]

Example: X⊗ Y =

[
0 · Y 1 · Y
1 · Y 0 · Y

]
=


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0


Two vector matrices:

|0〉 ⊗ |1〉 =
[
1

0

]
⊗
[
0

1

]
=


0

1

0

0


In general: if A is an m× n matrix and B is p× q, then A⊗ B
has m× p rows and n× q columns.
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Shorthand notation for tensor products

· |αβ〉 ≡ |α〉|β〉 ≡ |α〉 ⊗ |β〉.
· |α〉⊗n ≡ |α〉n ≡ |α〉1 ⊗ |α〉2 ⊗ ...⊗ |α〉n ≡ |αn〉
· A⊗n ≡ A1 ⊗A2 ⊗ ...⊗An
· A1B2 ≡ A⊗ B.

Note:

A1B2|ψ〉|φ〉 ≡ (A⊗ B)(|ψ〉 ⊗ |φ〉)
6≡

AB|ψ〉|φ〉 ≡ (AB⊗ I)(|ψ〉 ⊗ |φ〉)
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Quantum mechanics: States and state spaces

State space, HS, of a system S: complex vector space with inner
product (i.e., a “Hilbert space”).

- (Note: in QIT we usually only require Hilbert spaces of
finite-dimension).

The state of S is completely described by a unit vector |ψ〉 ∈ HS,
called the system’s “state vector”.

Qubits

· Two-dimensional quantum system (live in C2).

· General expression in the computational basis:
|ψ〉 = a|0〉+ b|1〉.
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Quantum mechanics: State evolution

A closed system S evolves unitarily through time; i.e.:

|ψt1〉 = U|ψt0〉.

E.g., Hadamard operator: H = 1√
2

[
1 1

1 −1

]
.

|0〉 H−→ |0〉+ |1〉√
2
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Quantum mechanics: Measurement

{Mm}: a set of measurement operators which describe a particular
measurement.

Each Mm describes a particular measurement outcome.

Probability of a outcome m given by: p(m) = 〈ψ|M†mMm|ψ〉.

The Mm satisfy the completeness relation:
∑
mM

†
mMm = I.

So:
∑
m p(m) =

∑
m〈ψ|M

†
mMm|ψ〉 = 〈ψ|ψ〉 = 1.

State of the system after measurement: Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
.
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Quantum mechanics: Measurement (cont’d)

Projection operators

P ≡
k∑

m=1

|um〉〈um| =
∑
m

Pm

is the projector onto the k-dimensional subspace HP of HS.

Since |um〉 are orthogonal ⇒ can be used to describe mutually
exclusive measurement possibilities; e.g., “spin up” vs. “spin
down”.

Properties

Hermitian: P = P†

Idempotent: PP = P2 = P

Completeness relation for projectors:∑
m P
†
mPm =

∑
m PmPm =

∑
mPm = I.
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Quantum mechanics: Measurement (cont’d)

E.g., qubit: a|0〉+ b|1〉.

Complete set of projectors: {P0 = |0〉〈0|, P1 = |1〉〈1|}.

The probability of getting result m is given by:

p(m) = 〈ψ|P†mPm|ψ〉 = 〈ψ|P2m|ψ〉 = 〈ψ|Pm|ψ〉.

E.g.,:

p(0) =
(
a∗〈0|+ b∗〈1|

)(
|0〉〈0|

)(
a|0〉+ b|1〉

)
= a∗〈0|

(
a|0〉+ b|1〉

)
= a∗a = |a|2

(Born rule).

|a|2 = a∗a: “modulus squared”.

If a = i/
√
2, |a|2 = (−i/

√
2)(i/

√
2) = 1/2.
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Quantum mechanics: Measurement (cont’d)

“Measure in the basis |m〉”: Perform the projective measurement
{Pm} = {|m〉〈m|}.

“Measure in the computational basis”: Perform the projective
measurement {Pm} = {|0〉〈0|, |1〉〈1|}.

etc.
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Quantum mechanics: Measurement (cont’d)

POVM measurements.

Recall: Probability of measurement outcome m given by:
p(m) = 〈ψ|M†mMm|ψ〉, with:

∑
mM

†
mMm = I.

Each (M†mMm) is a positive operator (i.e., 〈ψ|(M†mMm)|ψ〉 ≥ 0.)

For any arbitrary set of positive operators {Em}, one can always

re-express these in the form {M
†
mMm}.

Positive Operator Valued Measure (POVM): any set of positive
operators {Em} for which

∑
m Em = I.
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Quantum mechanics: Composite systems

The state space associated with n systems S1, S2, . . . , Sn is the
tensor product: HS1 ⊗HS2 ⊗ · · · ⊗ HSn .

Similarly, the combined state of S1, S2, . . . , Sn is
|s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sn〉.
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Consequences: Entanglement

One possible state of S1, S2:

|ψ〉 = |00〉+ |01〉+ |10〉+ |11〉
2

This is a “separable state”; i.e., re-expressible as the “product
state”: (

|0〉+ |1〉√
2

)(
|0〉+ |1〉√

2

)

Another possible state of S1, S2:

|Ψ−〉 = |01〉− |10〉√
2

.

One of the “Bell states” (the “singlet” state)

Not a product state!
· An entangled state.
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Recall: a maximally specific description of S’s state is given by
specifying a unit vector |ψ〉 ∈ HS, (the state vector for the system).

|ψ〉: a “pure” state.

Alternative representation of a pure state: ρ = |ψ〉〈ψ|.
· Called the density operator.

· Useful for representing mixed states.

Properties of the density operator:

· ρ is positive.

· has unit trace (i.e., tr(ρ) = 1).

Trace of an operator/matrix: tr(A) ≡
∑
iAii

E.g., tr

a b c

d e f

g h i

 = a+ e+ i.

38 / 60



Mixed states

ρ = p|ψ1〉〈ψ1|+ (1− p)|ψ2〉〈ψ2|

ρ = p

(
a b

c d

)
+ (1− p)

(
e f

g h

)
=

(
l m

n o

)
= q

(
p q

r s

)
+ (1− q)

(
t u

v w

)
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Recall: a maximally specific description of S’s state is given by
specifying a unit vector |ψ〉 ∈ HS, (the state vector for the system).

|ψ〉: a “pure” state.

Alternative representation of a pure state: ρ = |ψ〉〈ψ|.
· Called the density operator.

· Useful for representing mixed states.

Properties of the density operator:

· ρ is positive.

· has unit trace (i.e., tr(ρ) = 1).

Trace of an operator/matrix: tr(A) ≡
∑
iAii

E.g., tr

a b c

d e f

g h i

 = a+ e+ i.
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Recall: positve operators (since they are normal) are subject to the
spectral decomposition theorem.

ρ is positive. So it is decomposable into ρ =
∑
i λi|ui〉|ui〉 (where

{|ui〉} are orthogonal eigenvectors of ρ with eigenvalues λi).

I.e.,


λ1 0 . . . 0

0 λ2 . . . 0
...

...
... 0

0 0 . . . λn


Since ρ has unit trace, it follows that

∑
i λi = 1.

So we can use ρ to describe the case in which S is in the state |ui〉
with probability λi.

But beware taking this too literally ...
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Mixed states

ρ = p|ψ1〉〈ψ1|+ (1− p)|ψ2〉〈ψ2|

ρ = p

(
a b

c d

)
+ (1− p)

(
e f

g h

)
=

(
l m

n o

)
= q

(
p q

r s

)
+ (1− q)

(
t u

v w

)
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Unitary evolution of a density operator

Recall: a closed system S evolves unitarily through time; i.e.:
|ψ ′〉 = U|ψ〉.

Note: |ψ ′〉〈ψ ′| = U|ψ〉〈ψ|U†.

In general: ρ ′ = UρU†.
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Measurement in the density operator formalism

Recall: probability of a outcome m given by:
p(m) = 〈ψ|M†mMm|ψ〉.

Note that: 〈ψ|A|ψ〉 = tr(A|ψ〉〈ψ|) (Nielsen & Chuang, p. 76).

So: p(m) = tr
(
M
†
mMm|ψ〉〈ψ|

)
Consider:
ρ = p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2|+ . . . pn|ψn〉〈ψn| =

∑
i pi|ψi〉〈ψi|⇒ p(m|i) = tr

(
M
†
mMm|ψi〉〈ψi|

)
⇒ p(m) =

∑
i pitr

(
M
†
mMm|ψi〉〈ψi|

)
= tr

(
M
†
mMmρ

)
State of ρ after measurement (Nielsen & Chuang, p. 102:)

ρ ′ = MmρM
†
m

tr
(
M

†
mMmρ

)
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Composite states in the density operator formalism

ρABC = ρA ⊗ ρB ⊗ ρC.

When is a state pure/mixed?

Pure: tr(ρ2) = 1.

Mixed: tr(ρ2) < 1.

45 / 60



Reduced density operator

Let S, R be two systems in the joint state ρSR.

To find the state of S alone, we “trace out”, i.e. take the partial
trace over R:

ρS = trR(ρSR) =
∑
i

〈ri|ρSR|ri〉,

where |ri〉 is an orthonormal basis for HR.

E.g., let ρAB = |Ψ−〉〈Ψ−|.
Then:

ρB = trA(ρAB) =
|0B〉〈0B|+ |1B〉〈1B|

2
= 1

2I.

I.e., B is in the completely mixed state.
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Entropy

Recall (from last time):

H(X) ≡ −
∑
x px log(px) (Shannon entropy).

Quantifies the information gained when one comes to know the
value of a random variable. (equivalently, the uncertainty
associated with a random variable).

E.g., information source transmits sequences of 0s and 1s.

Probability that the next digit is 0 and 1: p0 = 1/3, p1 = 2/3.

H(X) = −(1/3× log 1/3+ 2/3× log 2/3) = 0.92.
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Fundamental properties:

H(X) = 0 when we are completely certain of the result.

· Intuitively: we gain no new information from any received
token.

H(X) is maximum when all outcomes are equally probable.

· Intuitively: information gained on average from the tokens
received is greatest.
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von Neumann entropy

S(ρ) = −tr(ρ log ρ)

= −
∑
i

λi log λi.

Fundamental properties:

S(ρ) = 0 when ρ is a pure state.

· We are completely certain of the result of a measurement.

S(ρ) is maximum when ρ is in the completely mixed state I/d (d:
dimension of HS).

· Completely uncertain what pure state the system will be in
upon measuring it.
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Recall: positve operators (since they are normal) are subject to the
spectral decomposition theorem.

ρ is positive. So it is decomposable into ρ =
∑
i λi|ui〉|ui〉 (where

{|ui〉} are orthogonal eigenvectors of ρ with eigenvalues λi).

I.e.,


λ1 0 . . . 0

0 λ2 . . . 0
...

...
... 0

0 0 . . . λn


Since ρ has unit trace, it follows that

∑
i λi = 1.

So we can use ρ to describe the case in which S is in the state |ui〉
with probability λi.

But beware taking this too literally ...
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von Neumann entropy

S(ρ) = −tr(ρ log ρ)

= −
∑
i

λi log λi.

Fundamental properties:

S(ρ) = 0 when ρ is a pure state.

· We are completely certain of the result of a measurement.

S(ρ) is maximum when ρ is in the completely mixed state I/d (d:
dimension of HS).

· Completely uncertain what pure state the system will be in
upon measuring it.
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Disanalogies between von Neumann and Shannon Entropy

Shannon: H(X) ≤ H(X, Y)
von Neumann: S(A) 6≤ S(A,B).

Classically, we are at least as uncertain about the combined state
of two random variables as we are about the state of any one of
them.

Quantum mechanics:

Consider: |Ψ−〉 = |0A〉|1B〉−|1A〉|0B〉√
2

.

· This state is pure ⇒ maximally specified.

· So: S(A,B) = 0

· Joint measurement is certain to yield a 1 and a 0.

But ρB = trA(ρAB) =
|0B〉〈0B|+|1B〉〈1B|

2 = 1
2I.

I.e., B is in the completely mixed state ⇒ S(B) is maximum!

52 / 60



Entanglement measures and the resource theory of entanglement

Maximally entangled states:

|Φ+〉 = |00〉+ |11〉√
2

|Φ−〉 = |00〉− |11〉√
2

|Ψ+〉 = |01〉+ |10〉√
2

|Ψ−〉 = |01〉− |10〉√
2

.

Not all states are maximally entangled. E.g.,

|φ〉 =
√
1

3
|01〉+

√
2

3
|10〉

is entangled but not maximally entangled.
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Entanglement can be useful for information processing.

E.g., the “teleportation” protocol is more or less reliable depending
on how much entanglement is present.

How to quantify? Theory of entanglement measures.
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Local operations and classical communication (LOCC)

LOCC = local operations performable at sites A and B, possibly
coordinated using classical communication.

- LO on A include: measurements on A, unitaries applied to A,
etc.

- CC can include: telephone, laser pulse, message in a bottle,
etc.

(Courtesy of: Plenio & Virmani, “An introduction to entanglement measures” (2007))
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Using LOCC to prepare a separable state:

· Probability that a ball of type i is drawn is pi.

· Alice chooses a ball from the urn and communicates the result
to Bob, Cindy, and Dennis (in distant labs).

· Each of Alice, Bob, Cindy, and Dennis, possesses a list of
which (pure) state to prepare given the drawing of a ball of
type i.

- Note: these lists may differ!

· Everyone forgets which ball was drawn.

· Result: ρABCD =
∑
i piρ

A
i ⊗ ρBi ⊗ ρCi ⊗ ρDi is prepared.
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ρABCD... =
∑
i

piρ
A
i ⊗ ρBi ⊗ ρCi ⊗ ρDi ⊗ . . .

is the general form of a separable state.

- So every separable state can be generated using LOCC alone.

Correlations generable using LOCC alone are always factorisable
(conditional on the classical communication).

- So a state is separable iff it can be generated using LOCC
alone.
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Maximally entangled states: If |ψ〉 is a maximally entangled state
of n qubits, it can be used to prepare (with certainty) any other
n-qubit state.

In general, ρ is more entangled than σ if the transformation ρ→ σ

can be performed using only LOCC operations.

- Can be used to impose an ordering on entangled states.

- Any measure of entanglement should respect this ordering.
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Bipartite (i.e., n = 2) pure-state case:

Maximally entangled states: |Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉
Measure of entanglement: Entropy of entanglement:

E(|ψAB〉〈ψAB|) ≡ S(A) = S(B)
≡ S(trB|ψ〉〈ψ|) = S(trA|ψ〉〈ψ|),

E.g., for |φ〉 =
√

1
3 |01〉+

√
2
3 |10〉, E(|φ〉〈φ|) = 0.92.

Compare with E(|Φ+〉〈Φ+|) = 1

Gives a unique total ordering of entangled states.
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Bipartite mixed state case

Entropy of entanglement is ambiguous in this case (b/c of
non-unique decomposability of mixed states).

Finding a good entanglement measure is more difficult. Measures
which satisfy all desiderata are hard to calculate. Other measures
don’t always generate the same orderings, etc.

Multipartite case

Don’t even have an unambiguous notion of a maximally entangled
state in this case.

Natual candidate:

|GHZ〉 = 1/
√
2 (|000〉+ |111〉)

Cannot generate using only LOCC:

|W〉 = 1/
√
3 (|001〉+ |010〉+ |100〉)

But we soldier on ...

60 / 60


